Reduced SQP implementation for large-scale optimization problems

نویسندگان

  • Sriram Vasantharajan
  • J Viswanathan
  • Lorenz T. Biegler
  • S. Vasantharajan
  • J. Viswanathan
  • L. T. Biegler
چکیده

The development and implementation of the Range and Null space Decomposition (RND) strategy for large-scale problems is described with emphasis on the optimization of engineering systems. The RND technique, as detailed in Vasantharajan and Biegler (1988), uses nonorthonormal, gradient based projections for the Jacobian. However, this implementation is dense, and does not take advantage of system sparsity. Here we extend this algorithm to incorporate general purpose sparse matrix techniques. Also, problems like inconsistent linearizations and infeasible Quadratic Programs (QPs), which are generally associated with QP based methods compromise the robustness of this method and need to be considered. Finally, systematic ways of generating a nonsingular basis for general nonlinear programs must be developed if this strategy is to be adapted to solve large, sparse problems efficiently. To deal with these problems, a two phase LP-based procedure is coupled to the RND algorithm. This strategy also serves to partition the variables into decisions and dependents, thereby generating a nonsingular basis. Any redundancies/degeneracies in the constraints are also detected and processed separately. The entire reduced SQP implementation is then interfaced with GAMS (Brooke et a/. (1988)), a front end for representing and solving process models. Finally, a thorough comparison of the RND based reduced SQP strategy with MINOS (Murtagh and Saunders (1978)) is effected on a set of NLPs and process design problems. The process problems include the optimization of the operation of distillation columns. These problems warrant special mention as have been uniquely conceived and implemented in a novel equation-oriented manner, thus exploiting the full potential of the GAMS architecture. Detailed discussion of the formulation and results are included and results are obtained that confirm the viability and efficacy of the reduced SQP implementation for efficient solution of large, difficult nonlinear programs. University Libraries Carnegie Mellon University Pittsburgh, Pennsylvania 15213

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interior point SQP strategies for large-scale, structured process optimization problems

Successive Quadratic Programming (SQP) has been the method of choice for the solution of many nonlinear programming problems in process engineering. However, for the solution of large problems with SQP based codes, the combinatorial complexity associated with active set quadratic programming (QP) methods can be a bottleneck in exploiting the problem structure. In this paper, we examine the meri...

متن کامل

SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization

Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first derivatives are available and that the constraint gradients are sparse. We discuss an SQP algorithm th...

متن کامل

SNOPT : An SQP Algorithm for Large - Scale Constrained Optimization ∗ Philip

Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first derivatives are available and that the constraint gradients are sparse. Second derivatives are assumed...

متن کامل

Object Library of Algorithms for Dynamic Optimization Problems: Benchmarking SQP and Nonlinear Interior Point Methods

The main purpose of this paper is to describe the design, implementation and possibilities of our object-oriented library of algorithms for dynamic optimization problems. We briefly present library classes for the formulation and manipulation of dynamic optimization problems, and give a general survey of solver classes for unconstrained and constrained optimization. We also demonstrate methods ...

متن کامل

Sequential Quadratic Programming �

Introduction Since its popularization in the late s Sequential Quadratic Program ming SQP has arguably become the most successful method for solving nonlinearly constrained optimization problems As with most optimization methods SQP is not a single algorithm but rather a conceptual method from which numerous speci c algorithms have evolved Backed by a solid theoretical and computational foundat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015